
1

Using natural language processing technology
for qualitative data analysis

Kevin Crowstona*, Eileen E. Allena, Na “Lina” Lib, Michael J. Scialdonea
and Robert Heckmana

a School of Information Studies, Syracuse University, Syracuse, NY, United States
b Center for Graduate Studies, Baker College, Flint, MI, United States

30 May 2010

Social researchers often apply qualitative research methods to study groups and their
communications artefacts. The use of computer-mediated communications has dramatically
increased the volume of text available, but coding such text requires considerable manual
effort. We discuss how systems that process text in human languages (i.e., natural language
processing, NLP) might partially automate content analysis by extracting theoretical
evidence. We present a case study of the use of NLP for qualitative analysis in which the
NLP rules showed good performance on a number of codes. With the current level of
performance, use of an NLP system could reduce the amount of text to be examined by a
human coder by an order of magnitude or more, potentially increasing the speed of coding by
a comparable degree. The paper is significant as it is one of the first to demonstrate the use of
high-level NLP techniques for qualitative data analysis. (150 words)

Keywords: natural language processing, qualitative data analysis, coding, group maintenance

Word count: 5995 words

* Corresponding author. Tel: +1 315 464–0272. Fax: +1 866 265–7407. Email: crowston@syr.edu

2

Biographical notes

Kevin Crowston is a Professor in the School of Information Studies at Syracuse

University. He received his PhD in Information Technologies from the Sloan School of

Management, Massachusetts Institute of Technology. His research examines new ways of

organizing made possible by the extensive use of information and communications

technology. Specific research topics include the development practices of Free/Libre

Open Source Software teams and work practices and technology support for citizen

science research projects, both with United States National Science Foundation support.

Eileen E. Allen is an Analyst in the Center for Natural Language Processing in the School

of Information Studies at Syracuse University. She has served as Project Leader and as a

natural language processing analyst. In this role she has written pseudo-code that enables

the TextTagger software to identify meaningful concepts and relationships within

unstructured texts, like newspaper articles. Eileen holds New York State teaching

certification for Elementary Education and for Music, and received her MLS from

Syracuse University in 1990. She has been an academic librarian and has done free lance

indexing and editing for faculty publications, doctoral dissertations and state and city

government.

Na “Lina” Li is an Assistant Professor in the Center for Graduate Studies at Baker

College. She received her PhD in Information Science & Technology from Syracuse

University. Her research interests reside in human-computer interaction and group

dynamics in virtual teams. Specific interests include group member behaviours in

Free/Libre Open Source Software teams, information system evaluation and adoption, e-

3

commerce website evaluation and use, affect, cognition and behaviour in human-

computer interaction.

Michael J. Scialdone is a doctoral candidate in Information Science and Technology at

the School of Information Studies at Syracuse University. He earned a BA in

Communication Arts from Utica College in 1999, and an MS in Information Design and

Technology from State University of New York Institute of Technology (SUNYIT) in

2006. His research interests include social media integration within distance-based

learning environments, and presentation of self in immersive 3D virtual worlds. He is

currently serving as managing editor of Association for Information Systems

Transactions on Human-Computer Interaction.

Robert Heckman is Senior Associate Dean and Associate Professor at the School of

Information Studies at Syracuse University, where he teaches strategic management of

information resources, information industry strategies, and information consulting. His

research interests include Strategy and Planning for Information Resources, and Teaching

and Learning Strategies for Information Professionals. He has more than 20 years

experience in the information services industry as a senior manager of data processing

operations, systems development, and information systems marketing. He received his

PhD in information systems at the Katz Graduate School of Business, University of

Pittsburgh.

4

Using natural language processing technology
for qualitative data analysis

Introduction

Social researchers often employ qualitative methods to understand the work practices of

groups. For example, researchers might examine transcripts of a group’s discussions to

understand how it solved some task and the impact of different approaches (e.g.,

Benbunan-Fich, Hiltz, & Turoff, 2003). Because such data are textual, they require

considerable manual effort to analyze. To support such analyses, researchers often use

Computer-Assisted Qualitative Data Analysis Software (CAQDAS) tools (e.g., Atlas.ti,

Hyper-research or Nudist, Barry, 1998; Lee & Esterhuizen, 2000). The most advanced

offer capabilities for automatically coding text, but most current CAQDAS tools simply

manage the traditional processes of coding and retrieving coded segments (Richards,

2002). While computer support does provide considerable benefits, analyzing significant

volumes of text still requires considerable effort from researchers, who must read and

reread to make sense of the text and to locate evidence to support or refute their theories.

As a result, qualitative research addressing important questions in social research often

relies on small sample sizes because of the analysis effort required.

Fortunately, recent years have seen a great growth in the capability of computer

systems to process text in human languages, paralleling the growth in the volume of

computer-readable text. There is a wide diversity of techniques and approaches, but we

refer to these technologies collectively as Natural Language Processing (NLP). In this

methodological paper, we introduce methodological techniques from the discipline of

NLP to social researchers to show how NLP might be applied to provide advanced

analytic capabilities to support analysis of textual data such as communication artefacts.

5

If successful, NLP tools could advance the work of social researchers by extending the

capabilities of current tools and enabling researchers to explore massive data sets in

greater depth. The contribution of this paper is to introduce the NLP methodology to

social researchers and to demonstrate the potential and limitations of NLP tools for

supporting social research.

Before discussing NLP technology and its possible application to qualitative data

analysis, we need to clarify the focus of our work. There is a widespread assumption that

qualitative work is always interpretivist (i.e., focused on understanding individuals’

concepts of their social worlds) but qualitative research can, in fact, adopt any

perspective: positivist, interpretivist or critical (Myers, 1997). In our studies, we are

interested in the behaviour of the groups studied and assume that their work and social

processes are accurately reflected by the texts that they produce. Rather than seeking to

uncover latent or hidden meanings in the text, we look for evidence of particular

behavioural patterns of the participants. These features make our approach essentially

positivist, despite its reliance on qualitative data.

In this paper, we explore how NLP techniques can be applied to support a

particular task in positivist qualitative research, namely coding for content analysis. We

focus in this paper specifically on coding and do not address the use of the coded data, as

critical as that is to research overall (Richards, 2002). Content analysis is a qualitative

research technique for finding evidence of concepts of interest using text as raw data

(Myers, 1997). The result of the coding process is a text annotated with codes for the

concepts exhibited (Miles & Huberman, 1994). In the approach we describe, codes are

applied based on the features of specific segments of text, rather than with the goal of

6

understanding and interpreting the entire text as a whole. For example, if the focus of a

study is group decision making, then transcripts of interactions are coded for evidence of

theoretical constructs of interest, such as problem identification or introduction of an

alternative. The goal of coding texts is to be able to study the relationship between

concepts as expressed in the text (either inductively or deductively). For example, the

coded text could be used to examine hypotheses such as the relationship between

participation in decision-making and the overall effectiveness of a team.

A key concern in coding is reliability, as measured by the degree of inter-rater

agreement, that is, whether different coders working on the same text identify the same

set of codes. If coders do not agree, then they discuss the coding until they reach a better

level of shared understanding of the code. Codes and coding decisions are documented in

a codebook. However, it must be admitted that a great deal of tacit knowledge is used in

coding, meaning that coders need to be trained to code reliably. Once the coders are

coding reliably, they must read the texts to code them for the concepts of interest, which

can be quite labour intensive for a large corpus. For example, to study decision making in

an online group would require reading all (or a large number) of the emails exchanged

among members looking for evidence of constructs related to decision making. As a

result, research teams often face limitations in the scope of analysis feasible based on the

available work force. It is this problem of scale that we seek to address by using NLP

technology.

In the following sections, we first introduce NLP and discuss its capabilities and

the underlying theoretical foundations of its use. We then present a short case study of its

application to coding qualitative data to answer a social research question, namely an

7

examination of the role of group maintenance behaviours in online groups. We discuss

limitations of our approach and present a cost-benefit analysis of the use of this novel

approach to data analysis before concluding with a discussion of future work.

Natural language processing

Natural Language Processing is a computational approach to text analysis. It “is a

theoretically motivated range of computational techniques for analyzing and representing

naturally occurring texts at one or more levels of linguistic analysis for the purpose of

achieving human-like language processing for a range of tasks or applications” (Liddy,

2003). In the current paper, we discuss how NLP can be used to automate (fully or

partially) the process of qualitative data analysis by identifying segments of text that

provide evidence for concepts of theoretical interest (i.e., coding).

NLP tools and approaches can be applied at different levels of analysis. The levels

of linguistic analysis range from the lowest, Phonological, to the highest, Pragmatic, as

shown in Table 1. Successively higher levels of linguistic processing reflect larger units

of analysis, as well as increasing linguistic complexity and difficulty in processing. The

larger the unit of analysis becomes (i.e., from morpheme to word to sentence to

paragraph to full document), the greater the lexical variety, sentence structure and

potential subtlety in meaning. Discerning meaningful regularities on which to build rules

for processing text becomes a more difficult and elusive process as one moves from the

lowest to the highest levels. Additionally, higher levels presume reliance on the lower

levels of language understanding, and the theories used to explain the data move more

into the areas of cognitive psychology and artificial intelligence.

[Insert Table 1 about here]

8

Because of these differences, lower levels of language processing have been more

thoroughly investigated and incorporated into systems, as they are easier to encode with

more reliable results. For example, it is common for CAQDAS tools to support various

kinds of automated searches for keywords (lexical level), but support at semantic or

higher levels is less common. Language processing for content analysis similarly depends

on an understanding of the lower levels of language, but its promise is situated in the

higher levels of semantic, discourse and pragmatic levels of understanding.

To analyze language at the higher levels of linguistic analysis, we draw on

sublanguage theory. The early research in Sublanguage Theory (Liddy, Jorgensen, Sibert,

& Yu, 1991; Liddy, Jorgensen, Sibert, & Yu, 1993; Liddy, McVearry, Paik, Yu, &

McKenna, 1993; Sager, 1970; Sager, Friedman, & Lyman, 1987) has shown that there are

differences in the linguistic phenomena amongst various genres (e.g., news reports,

manuals, interviews, email). These genres exhibit characteristic lexical, syntactic,

semantic, discourse and pragmatic features used by generators of these genres. Formally,

a sublanguage is defined as the particular language usage patterns, which develop within

the written or spoken communications of a language community that uses this

sublanguage to accomplish some common goal or to convey and discuss activities and

events of common interest.

Once developed for a genre, a sublanguage grammar (at the syntax level) reflects

the information structure of communication or texts in the domain, while the semantic

classes of words used and the relationships between classes reflect the domain’s

knowledge structure. The result of this type of theory-driven and data-focused approach

is a domain model that provides guidance for learning the particularized linguistic

9

constructs to understand the meaning of texts expressed in the sublanguage. Technology

can then be developed to simulate this understanding (Liddy, Jorgensen, et al., 1993) and

instantiated within a system to extract meaning at multiple levels of understanding.

Natural Language Processing uses a variety of techniques to extract meaning from

context based on features of language use. Two general approaches are in use: statistical

and symbolic approaches. The symbolic approach is knowledge-based, analyzing

linguistic phenomena that occur within texts and reflecting syntactic, semantic and

discourse information in human-developed rules and lexicons to extract meaning from

text. On the other hand, corpus-based statistical methods apply mathematical techniques

to develop approximate generalized models of linguistic phenomena based on actual

examples, usually treating documents as independent “bags of words”. We will present

our experiences applying the symbolic approach. Compared to statistical techniques,

symbolic approaches have an advantage of not requiring large data sets for training,

which fit our situation. On the other hand, symbolic methods require considerable effort

to develop rules and the rules often are not easily transportable to other domains, thus

limiting applicability to specific domains (Liddy, 2003), limitations that we will return to

in the discussion.

Example study

In this section, we present a case study of NLP for qualitative data analysis. The authors

are collaborating on a study of the work practices of teams of free/libre open source

software (FLOSS) developers. These teams are geographically and temporally

distributed, rarely interact on a face-to-face basis, and coordinate their activities primarily

through electronic channels (Raymond, 1998; Wayner, 2000). Large archives of these

10

interactions are available for analysis. In the following sections, we describe the stages of

the study, starting with conceptual development and coding system development through

manual coding before discussing the use of NLP for this coding task. In keeping with our

focus on research methods, here we present only enough detail about the study for a

reader to understand the method applied and the role of NLP, omitting specific discussion

of the study results.

Conceptual development

In this study, we examined the role of Group Maintenance behaviours in the effectiveness

of FLOSS teams. Group maintenance behaviour refers to the discretionary relationship-

building behaviour among members that binds the group, maintains trust and promotes

cooperation (Ridley, 1996). To understand and codify these behaviours, we drew on two

theories describing pro-social, organizational behaviours: social presence (Garrison,

Anderson, & Archer, 2000; Rourke, Anderson, Garrison, & Archer, 1999) and face work

in computer-mediated communications (CMC) (Morand & Ocker, 2003). We discuss

each in turn.

Social presence. Garrison, Anderson & Archer (2000) defined social presence to

be “the ability of participants… to project their personal characteristics into the

community, thereby presenting themselves to the other participants as ‘real people’” (p.

89). Strategies that people in CMC use to increase the degree of their social presence

include the use of emoticons, humour, vocatives (a direct reference to another person),

phatics (speech used to share feelings rather than information), inclusive pronouns,

complimenting, expressions of appreciation and agreement, and non-standard or

11

expressive punctuation and conspicuous capitalization as means to express emotion

(Rourke, et al., 1999).

Face work. Referring to Goffman (1959), Morand (1996) explains that face is

“the positive value individuals claim for the public self they present” (p. 545). Face is the

result of two desires: independence of action (also known as negative face) and the need

for approval and regard (also known as positive face) (Duthler, 2006; Meier, 1995).

Negative face is exemplified by distancing behaviours to preserve self direction, freedom

from imposed restrictions and a desire to be left alone, while positive face is exemplified

by connectionist behaviours that seek respect, approval and a sense of belonging to the

community (Duthler, 2006). However, whatever the public image one claims, face can be

easily threatened or lost during interactions through face-threatening acts (FTAs). Thus,

maintaining one’s own face, as well as that of others, permeates social interaction

(Holtgraves, 2005; Morand, 1996).

Politeness is a mitigation strategy that individuals use to moderate face threats in

communicating with others (Morand, 1996). Politeness in CMC takes the form of

linguistic acts that can be either positive tactics to invoke positive face or negative tactics

to invoke negative face (Morand & Ocker, 2003). Examples of positive politeness tactics

include use of colloquialisms or slang, inclusive pronouns, vocatives, agreement and

sympathy. Examples of negative politeness include use of apologies, formal verbiage,

hedges, indirect inquiries, subjunctives, honorifics, passive voice and rationales for FTAs

(Morand, 1996; Morand & Ocker, 2003).

Based on these theories and their discussion in the literature, an initial coding

scheme was created deductively to investigate Group Maintenance behaviours in the

12

FLOSS data. This coding scheme described the Group Maintenance indicators of interest,

described their characteristics and included definitions and examples to guide coders.

Manual data analysis

For the study, two FLOSS projects were selected, both of which had a goal of developing

an Instant Messaging (IM) client: Gaim and Fire. The two projects were selected to be

similar in terms of their project goals, nature of tasks, and potential users, as to allow for

comparison of project effectiveness. Overall, Gaim emerged as a more effective project,

according to Crowston et al.’s multivariate measures (Crowston, Howison, & Annabi,

2006). Evidence of Gaim’s success can also be seen in that the project is still active (now

known as Pidgin), while Fire ceased active development in early 2007.

The data for the analysis was a sample of 1469 messages, a subset chosen

randomly from the available data from the two developer discussion lists. These lists

were chosen because they are the primary channel through which developers interact and

as such are the main venue for group maintenance. A random sample was selected

because the available coder time was not sufficient to code the entire archive, an example

of the problem we seek to address with NLP.

Two PhD students using the Atlas.ti software package trained to code according

to the initial codebook. An iterative process of coding, inspection, discussion and revision

was carried out to inductively learn how the indicators evidenced themselves in the data.

Training continued until the coders reached an inter-rater reliability over 0.80, a typical

level of agreement expected for qualitative data analysis. However, several indicators,

such as humour, were dropped from analysis, as they proved to be too difficult for the

coders to reach consensus through subjective judgments. Table 2 outlines the final coding

13

scheme used to manually code the selected messages. After the coders achieved

reliability, they independently coded the remaining messages.

[Insert Table 2 about here]

Automated group maintenance coding

In this section, we discuss how NLP was applied to perform the qualitative data analysis

described in the previous sections. The automated content analysis coding was

approached as an Information Extraction (IE) task, meaning that text showing evidence

of group maintenance behaviour was to be identified and extracted from the text for

further analysis, using symbolic rules developed by an analyst. However, in applying

NLP, our goal was to develop a system that could support, rather than replace, a human

coder. Therefore, we assumed that the output of the system would be reviewed and

corrected by a human coder, rather than being used as is.

For this project, we used a text-processing engine developed at our University

(anonymized for review). The system processes the input text through a series of stages,

beginning with preprocessing, which takes the raw text and stores it in a uniform format

for processing. We converted the raw messages to a format that would preserve the

metadata elements, identify significant features of the data, such as signature lines or

quoted messages and prepare the data for processing with our text processing engine, thus

encoding the discourse structure for further use. We also extracted structured

information, such as date, sender and subject.

The second stage is tokenization, which identifies the smallest complete units

within a text, usually words, as well as sentence detection. Then each token is tagged

14

with a part of speech (morphological and lexical understanding). For example, for the

sentence,

Alan Helfer mentioned these security updates back
in July

applying tokenization and part-of-speech tagging would result in the following string:

<sentence> Alan|NP Helfer|NP mention|VBD these|DT
security|NN update|NNS back|RB in|IN July|NP .|.
</sentence>

Note that the tense of ‘mentioned’ and the plurality of ‘updates’ is embedded in the part-

of-speech tag (VBD-past tense verb; NNS-plural noun) and the word itself is converted to

its lemmatized form. This string is next fed into bracketing stages, which identify

numeric and temporal phrases, common noun phrases and proper noun phrases, reflecting

lexical, syntactic, semantic and pragmatic understanding of the sentence, as in the

following example:

<sentence> <proper noun> Alan|NP Helfer|NP
</proper noun> mention|VBD these|DT <noun phrase>
security|NN update|NNS </noun phrase> back|RB
in|IN <temporal> July|NP </temporal> .|.
</sentence>

The next stage of automatic processing interprets the phrases and assigns each a category

(person, organization, date, etc.), resulting in a sentence marked up as follows:

<sentence> <proper noun, "person"> Alan|NP
Helfer|NP </proper noun> mention|VBD these|DT
<noun phrase, “unknown”> security|NN update|NNS
</noun phrase> back|RB in|IN <temporal, “month">
July|NP </temporal> .|. </sentence>

After the text has been marked up for these entities, in the final stage of analysis, hand-

written information extraction rules are applied to extract a variety of kinds of

information embedded in the text, such as metadata elements, relationships among

entities, descriptors, or, in our application, evidence of a theoretical construct of interest.

15

Rule-writing effort

An NLP analyst developed information extraction rules for the group maintenance codes

in Table 1. Because of time limitations, we developed NLP rules for only twelve of the

fifteen manual codes: all except Vocatives, Disclaimers/Self-depreciation and Stating

Rationale for FTA. (Preliminary work for these three codes suggests that the issues

surrounding the automation of the coding would be similar to the issues for the other

twelve.) The rule-writing process was iterative: rules were written to code the most

abundant and obvious examples of the coded text and then progressively refined for

coverage and accuracy.

Some rules, as for Capitalization, were primarily based on regular expressions to

detect upper case. Other rules, as for Apology, focused on specific lexical items—‘sorry’,

‘apologies’—or a lexicon of lexical items. But others required the use of the full range of

NLP features such as part of speech, actual word, semantic class and syntax, as seen in

the example rule in Figure 1, a rule for finding Agreement.

[Insert Figure 1 about here]

As shown in Figure 1, the rules used for this project have a two-part structure: a

premise and an action. The premise defines the matching criteria for the rule. The action

defines the resulting output when a text string matches the premise of the rule. In the

example rule, the <S> in the premise indicates that the matching text must be situated at

the beginning of a sentence. The elements seem, more, and either than or then are

specific lexical items (words) that must appear in the sentence. The element do|VBZ

combines a lemmatized lexical item, do, with tense information from the part of speech

VBZ (present tense). In combination with the semantic class represented by $it, which

16

can be the word ‘it’, ‘this’, ‘that’, or ‘these’, the verb which actually is represented by

do|VBZ can be ‘do’ (“these do”), or ‘does’ (“it does”), an example of the use of syntax.

The element $anywd|$anypos represents any token in a candidate text string (any

word tagged with any part of speech). When a candidate text string matches this rule, the

resulting action tags the text with the code agreement. For example, the rule would

match and code as Agreement the sentence:

It does seem to be more trouble then i thout at
first.

The ruleset included both positive rules, to code sections of text, and negative

rules, to cancel out the coding of text. For example, if a rule finds “Sorry that I caused a

problem here,“ it would be coded as Apology. However the presence of “not” in “I’m not

sorry that I caused a problem here,” indicates quite the opposite, and thus another rule is

added that is intended to rectify the coding when “not” appears.

Rule writing was interspersed with testing to assess performance on the training

data during the development process. The results of the manual coding of the 1469

messages from Fire and Gaim were used for this effort as the so-called “Gold Standard”

data (GS), meaning that these data are assumed to be correct and so can be used to check

the performance of the NLP system. A portion of the coded data (155 messages, or about

10%) was set aside for final testing of the completed ruleset. The remainder was used to

assess the performance of the ruleset as it was being built.

Results

To test the performance of the automated process, the developed ruleset was run on the

10% of the GS data reserved for testing. Each message in the test set was inspected to see

17

which instances of Group Maintenance were correctly coded, which were missed, how

many additional instances were erroneously coded by the automated process and to

understand the nature of the errors.

Two standard information extraction metrics were used to evaluate the automated

system, Recall and Precision. Recall measures the proportion of the codes in the GS data

that was identified and extracted by the system (i.e., coverage). Precision measures the

proportion of the automatically extracted data that was coded correctly, as compared to

the GS data (i.e., accuracy). It is usually difficult to have high performance on both

measures: in general, the more accurate the results, the smaller the coverage of the target

data, and vice versa. To completely automate coding, it would be necessary to achieve

good performance on both measures. However, given our goal of developing a support

system, in building the rules, we optimized the automated system for Recall, with a goal

of 80%. We took this approach because we felt that it would be easier for someone

reviewing the system output to remove incorrectly coded data (included due to low

Precision) than to search the message logs to find evidence that had not been coded at all

(the result of low Recall).

Table 3 shows the system performance for the 12 Group Maintenance codes. The

training and testing columns compare the performance of the system on the training and

testing data. The training performance is generally higher because the rules were

developed in reference to these data. Examining the codes in more detail, we see that

Recall is highest for Emoticon, Inclusive Pronouns, and Formality, reflecting the

regularity of the realization of these constructs in the text. It is lower for codes such as

Slang or Appreciation that show higher variability. The Precision of the results is lower,

18

reflecting our deliberate decision to favour Recall over Precision. Nevertheless, Precision

is quite good for a number of codes, such as Emoticon or Salutations, and with the

exception of Capitalization and Punctuation, all are at usable levels. We discuss below

the problems that lead to the unexpectedly low level of Precision for these codes.

[Insert Table 3 & 4 about here]

Another way to show the performance of the system is with a table comparing the

GS and system decisions, as shown in Table 4 for the test data for one construct, Hedges.

The first row of the table shows that the GS test data (the reserved 10% of messages)

included 244 instances of Hedges, of which the system correctly coded 181 and missed

63, giving a Recall of 74%. The first column of the table shows that the system coded a

total of 262 segments of text as being Hedges, of which 181 matched the GS and 81 did

not, giving a Precision of 69%.

Not shown is the final cell, i.e., the number of segments of text in the corpus that

neither the human coders nor the system coded as being a hedge. Because of the use of

thematic units as the unit of coding (a limitation discussed below), it is not possible to

give a precise figure for this cell. However, the test data included 155 messages,

suggesting the number of units was in the thousands. As a result, even with the current

level of performance, the system could reduce the amount of text to be examined by a

human coder by an order of magnitude or more (in this case, from thousands of units to

262), potentially increasing the speed of coding by a comparable amount. The

performance impact would be greater for codes occurring less frequently (for which the

narrowing would be greater), but lower for codes for which the system exhibits lower

Precision.

19

Discussion and limitations

Overall, the use of NLP to code qualitative data seemed quite promising, as the rules that

were developed showed good performance on a number of codes. In analyzing the results

of our work, we identified several issues that impacted performance. In this section we

discuss these issues, before concluding with a discussion of the cost and benefits of this

approach.

Insufficient preprocessing. Preparing the data for processing is an important and

often time-consuming part of NLP. For this effort, messages were preprocessed in

various ways, e.g., to section off headers, forwarded messages and signature blocks,

because human analysts generally excluded these sections from manual coding. However,

messages also include lines of programming language, error logs, source file comparisons

(diffs) and messages copied in from other sources that are difficult to reliably identify and

exclude from processing. Unfortunately, including this content particularly affected

Precision for Punctuation, Capitalization and Emoticon, as it frequently included strings

of punctuation, capitalized words or characters that resemble emoticons.

Unit of coding. In manually coding the data, the researchers chose the thematic

unit as the unit of coding, a common choice in qualitative data analysis. A word, a phrase,

a sentence or an entire paragraph might be marked as capturing the group maintenance

evidence. Unfortunately, with this variability in scope it is difficult to exactly match the

boundaries of text to be captured using NLP rules. For the results reported above, any

overlap between the text coded manually and that coded automatically was considered to

be a match, as is often done when comparing human coders. To facilitate future

20

comparisons of human and automatic coding though it would be better to pick a more

easily defined unit of coding, such as the sentence or even an entire message.

Adequate training examples. Some codes were so sparse in the data as to provide

unreliable training data. In general, to apply NLP requires hundreds of examples of

correctly coded text or even more to apply statistical techniques. This shortcoming in our

data is evident in performance differences; in general, the difference between training and

testing is greater for the codes that had fewer than 100 training examples, with the

exception of Formal Verbiage, which performed surprisingly well.

Manual coding error. In order to assess the benefit of automatic coding,

performance is compared against the human results. However, any errors in manual

coding are propagated in the automatic processing, as rules are built based on possibly

erroneous data. We focused on gaining complete agreement between human coders, but

on further review found that the GS data they created still contained coding errors, for

several reasons. First, it took some time for inter-coder reliability to stabilize. The GS

data used in our evaluation represents coding prior to and including the stabilization

period, meaning that not all of the coding is of the same quality. Second, coding is a

tedious, fatiguing process, so errors both of commission and omission are likely to occur

in coding – perfect reliability is simply not achievable with human coders in reasonable

time. As well, the human coders were somewhat disadvantaged in their assessment of

some codes, for example Slang, because they were not from the community of

developers, and therefore not adequately familiar with some of the terms or community-

specific meanings.

21

We attempted to quantify the effect of manual coding error on our results by re-

judging NLP false hits for correctness according to the codebook (vs. against the GS

data). Our expert NLP analyst judged that with this correction, Precision for all codes

would have risen. The most dramatic increases would be seen for codes that have the

fewest examples in the GS data, for which a few errors makes a noticeable difference in

the result. However, for Inclusive Pronouns, there was a difference of 31% between the

achieved Precision and the analyst’s estimate correcting for manual coding errors,

reflecting the ease with which automated techniques can find such regular forms and the

difficulties human coders have. This result shows that the automatic process may in some

case be even more reliable for finding instances than human coders.

Language and Meaning. The thorniest problems for automation of content

analysis deal with the incredible richness of language. This richness varies by code of

interest. For example, very few rules were needed for good performance for the codes

Formal Verbiage, Apology and Agreement, which exhibit regularities in their expression.

On the other hand, Hedges and Vocatives (which was explored but not formally

evaluated) proved more difficult for a variety of syntactic and semantic reasons:

• Context. Content analysis can be highly dependent upon context. Unfortunately, the

processing engine we used currently does not have a way to consider text outside of a

sentence boundary, except for co-reference purposes. Thus, context outside of a single

sentence is not available for consideration. This limitation prevents full exploitation of

discourse structure and context of an entire message.

• Syntactic variety and synonymy. Language holds an infinite variety of ways to

structure and convey meaning using differing syntactic structures, synonymous terms,

22

and embellishments (adverbial and adjectival clauses). While the sublanguage of

software engineering does not reflect the full variety of language, good automation can

require much more training data than was available to capture this richness.

• Multiple aspects of meaning. Various clue words were helpful in identifying Hedges,

for example, ‘probably’. Others, such as ‘seem’, ‘would’, ‘of course’, were more

problematic, as sometimes they were indicators and at other times, not. Context, both

within the sentence and beyond the sentence, can subtly affect meaning, which under

many circumstances can be difficult for an automated system to capture. A solution

for a particularly difficult problem in correctly identifying Vocatives has not yet been

explored, that is, identifying the differentiating features that indicate when ‘you’ refers

to a specific individual and when ‘you’ refers to ‘a person’, as in the sentence, “When

you open up the file, you will see two items”. Without the ability to interpret context

surrounding this sentence, or an associated response to the message, it is difficult to

code Vocatives with high recall and reasonable precision.

• Implicit meaning. NLP systems are only now just beginning to explore the extraction

of meaning that is implicit in text (Snyder, D’Eredita, Yilmazel, & Liddy, 2009). This

is a very challenging area of research, since even humans have difficulty in this space,

as evident in the difficulty our analysts encountered with the Humour code.

Cost/benefit

Finally, an important component to consider in the evaluation of NLP-enabled content

analysis is the potential cost-benefit to a research project. While NLP can potentially

automate parts of the coding process, additional effort is required to develop and validate

a ruleset. In the approach we took, NLP coding was built upon a manually crafted

23

codebook (as is required for any such qualitative study). However, the NLP ruleset

required additional development for the rules and testing time to determine performance,

both requiring the time of a trained NLP analyst. For a large-scale analysis system

handling very large volumes of textual data, particularly discourses spanning long

periods, some development time might also be needed to adjust for changes in data

format, new discoveries and evolution in both the data content and the analytic thinking.

For the case reported here, a software engineer and a linguistic analyst each

committed approximately 5 weeks of effort (FTE) over the course of a year for data

preprocessing, rule-writing, development and testing. In comparison, two human coders

worked half time on the project for the same period and were able to code only two

projects, though some of this effort went to refining the codebook that was used as a basis

for both the manual and NLP coding. Once the coders were trained and codebook

stabilized, manually coding 700 messages on all 15 codes took approximately 100 hours

of effort for one coder.

In light of the additional work needed, an NLP-supported approach would not

make sense for small (e.g., a thousand or so messages) unique data sets that can be

handled by training content coders within a relatively short time span. Furthermore, we

note that the NLP approach is only appropriate for theoretical concepts that find a regular

expression in text. NLP would be unlikely to work for coding that draws heavily on

subjective interpretation and context. However, for suitable codes, and after development

resources have been invested, benefits can be realized for large-scale studies by

processing and analyzing large volumes of data with reduced human coder effort.

Specifically, the investment of time in writing rules should enable order of magnitude

24

reductions in the effort needed to code additional text, potentially allowing the analysis of

hundreds of groups with hundreds of thousands of messages. Indeed, such automation is

arguably the only way to reliably handle such large amount of text that would otherwise

require hundreds of person-years of coder effort.

Conclusions

In this paper, we explored the possibilities and limitations of applying NLP techniques to

the task of qualitative data analysis, specifically content analysis of communication

artefacts from online groups. Our future work for this project has three aspects.

First, we are building a system around the NLP text processor that will allow a

user to quickly check the system-applied codes. Second, we will use the system to

support our study of Group Maintenance behaviour in FLOSS teams. We have developed

some initial hypotheses based on patterns we saw in the human coding, but the current

volume of manually coded data allows for only a comparative case study of the two

teams. By applying NLP, we hope to be able to analyze hundreds of teams, thus

providing an evidentiary basis for stronger findings.

Finally, a key bottleneck in the current study is the reliance on a trained NLP

analyst to develop and tune the rulesets. To avoid this bottleneck, we plan to explore the

use of machine learning (ML) techniques to build rules. The most significant limitation of

an ML approach though is that it requires even more GS data as input: a rule of thumb is

500 examples of each code, which we have for only two of the codes in our example

case.

In summary, our small case study demonstrates the promise of NLP support for

this particular style of qualitative data analysis. The performance of the rulesets we

25

developed suggests that this approach has considerable promise for coding at least some

kinds of concepts. This approach seems most promising for projects with content analysis

codes that are readily evident in large data sets, projects that analyze multiple data sets

over time and projects where manual coding is simply not feasible due to the volume of

the data, an increasingly common challenge as social researchers study online groups.

26

Tables and Figures

Table 1. Levels of linguistic analysis.

Level Definition and examples
Phonological Phonological analysis pertains to the auditory features of language:

sound, pitch, and inflection.
Morphological Morphological analysis occurs at the smallest level of linguistic

meaning, the morpheme. For example, ‘-ed’ added to the end of a
word can signify an action that occurred in the past, and ‘un-‘ added
before a word, such as ‘tested’, radically alters a word’s meaning.
Prefixes and suffixes are the most familiar morphemes.

Lexical Lexical analysis occurs at the word level. Part of speech is a feature of
lexical analysis affecting meaning. Consider, for example, the
difference in meaning between ‘book’ as a noun (read a book), and
‘book’ as a verb (to book a flight).

Syntactic Syntactic analysis pertains to the meaning that derives from the
sequence of words in a phrase or sentence. For example, consider the
different meanings of ‘the man hit the ball’ and ‘the ball hit the man’.

Semantic Semantic analysis deals with the definitional meanings of words within
context, whether ‘bank’, for example, refers to a river bank, or to a
financial institution. Semantic analysis can deal with fine gradations of
meaning depending on context.

Discourse Discourse analysis reveals meaning based on a larger unit than a
sentence, where the meaning of a particular sentence is affected by the
text that precedes it, or its placement within a document. Discourse
analysis has led to the identification of genres of documents, where
information can be predictably found through document structure
(introduction, byline, research findings, etc.).

Pragmatic Pragmatic analysis involves the incorporation of world knowledge to
determine meaning, that is, connotations based on experience, and
shared understandings. For example, we understand much more about
“Third World Countries” than the component words can tell us.

27

Table 2. Group maintenance coding scheme showing conceptual categories, indicators
and definitions.

Category Indicator Definition
Emoticons Emphasis using emoticons
Capitalization Emphasis using capitalization

Emotional
Expressions

Punctuation Emphasis using punctuation

Colloquialisms/Slang Use of colloquialisms or slang beyond group-
specific jargon

Vocatives Referring to or addressing a specific participant
Inclusive pronouns Incorporating writer and recipient(s)
Salutations/Closings Personal greetings and closures
Complimenting Complimenting others or message content
Expressing agreement Showing agreement
Apologies Apologizing for one’s mistakes
Encouraging
participation Encouraging members of the group to participate

Positive
Politeness

Expressing appreciation Showing appreciation for another person’s
actions

Disclaimers/Self-
depreciation

Disclaiming prior to a face-threatening act
(FTA); self-depreciation to distance

Rational for FTA Stating an FTA as a general rule to minimize
impact

Hedges/Hesitation Tactics to diminish force of act; hesitation in
disagreement

Negative
Politeness

Formal verbiage Using formal wording choices

Figure 1. Example NLP rule showing premise and action.

Premise
<S> ($it|$anypos) (do|VBZ) (seem|$anypos)
($anywd|$anypos)* (more|$anypos) (th[ae]n|$anypos)
($i|$anypos) ($anywd|$anypos)* </S>

Action ==> generic ($&, 'entity', 'gm', 'agreement',
sf($1,$2,$3,$4,$5,$6,$7,$8));

28

Table 3. System performance.

CODE RECALL PRECISION GS
of INSTANCES

 Training Testing Training Testing Training Testing
Apologies 89% 67% 81% 67% 19 3
Formality 90% 89% 55% 53% 29 9

Complimenting 88% 67% 70% 40% 40 6
Agreement 87% 80% 61% 60% 71 15

Capitalization 96% 60% 27% 19% 73 10
Appreciation 90% 64% 91% 45% 90 14

Emoticon 91% 91% 30% 81% 122 32
Salutations 77% 86% 79% 86% 159 28
Punctuation 79% 71% 16% 22% 257 34

Slang 89% 67% 71% 69% 274 81
Inclusive
Pronouns

98% 98% 90% 58% 478 55

Hedges 80% 74% 63% 69% 1136 244
Note: Recall is the percentage of human applied codes found the system; precision is the
percentage of codes found by the system that match the human codes. Testing results are
on the 10% of data held back for final testing.

Table 4. System decisions compared to Gold Standard decisions for test data for Hedges.

 System
 Coded Not coded Total

Coded 181 63 244
Gold standard

Not coded 81
 Total 262

29

References

Barry, C. A. (1998). Choosing qualitative data analysis software: Atlas/ti and Nudist compared.
Sociological Research Online, 3(3).

Benbunan-Fich, R., Hiltz, S. R., & Turoff, M. (2003). A comparative content analysis of face-to-face vs.
asynchronous group decision making. Decision Support Systems, 34(4), 457–469.

Crowston, K., Howison, J., & Annabi, H. (2006). Information systems success in Free and Open Source
Software development: Theory and measures. Software Process—Improvement and Practice,
11(2), 123–148.

Duthler, K. W. (2006). The politeness of requests made via email and voicemail: Support for the
hyperpersonal model. Journal of Computer-Mediated Communication, 11(2), 500–521.

Garrison, R., Anderson, T., & Archer, W. (2000). Critical thinking in a text-based environment: Computer
conferencing in higher education. The Internet and Higher Education, 2(2-3), 87–105.

Goffman, E. (1959). Presentation of Self in Everyday Life. Garden City, NY: Doubleday.
Holtgraves, T. (2005). Social psychology, cognitive psychology and linguistic politeness. Journal of

Politeness Research. Language, Behaviour, Culture, 1(1), 73–93.
Lee, R. M., & Esterhuizen, L. (2000). Computer software and qualitative analysis: Trends, issues and

resources. International Journal of Social Research Methodology, 3(3), 231–243.
Liddy, E. D. (2003). Natural Language Processing Encyclopedia of Library and Information Science (2nd

ed.). New York: Marcel Decker.
Liddy, E. D., Jorgensen, C. L., Sibert, E. E., & Yu, E. S. (1991). Sublanguage grammar in natural

language processing. Paper presented at the RIAO '91 Conference, Barcelona.
Liddy, E. D., Jorgensen, C. L., Sibert, E. E., & Yu, E. S. (1993). A sublanguage approach to Natural

Language Processing for an expert system. Information Processing & Management, 29(5), 633–
645.

Liddy, E. D., McVearry, K., Paik, W., Yu, E. S., & McKenna, M. (1993). Development, implementation
and testing of a discourse model for newspaper texts. Paper presented at the ARPA Workshop on
Human Language Technology, Princeton, NJ.

Meier, A. J. (1995). Passages of politeness. Journal of Pragmatics, 24(4), 381–392.
Miles, M. B., & Huberman, A. M. (1994). Qualitative Data Analysis: An Expanded Sourcebook (2nd ed.).

Thousand Oaks: Sage Publications.
Morand, D. A. (1996). Dominance, deference, and egalitarianism in organizational interaction: A

sociolinguistic analysis of power and politeness. Organization Science, 7(5), 544–556.
Morand, D. A., & Ocker, R. J. (2003). Politeness theory and computer-mediated communication: A

sociolinguistic approach to analyzing relational messages. Paper presented at the 36th Hawai'i
International Conference on System Sciences (HICSS-36).

Myers, M. D. (1997). Qualitative research in information systems. MIS Quarterly, 21(2), 241–242. MISQ
Discovery, archival version, June 1997, http://www.misq.org/discovery/MISQD_isworld/. MISQ
Discovery, updated version, last modified: November 2008, accessed May 2010.

Raymond, E. S. (1998). Homesteading the noosphere. First Monday, 3(10).
Richards, L. (2002). Qualitative computing: A methods revolution? International Journal of Social

Research Methodology, 5(3), 263–276.
Ridley, M. (1996). The Origins of Virtue: Human Instincts and the Evolution of Cooperation. New York:

Viking.
Rourke, L., Anderson, T., Garrison, D. R., & Archer, W. (1999). Assessing social presence in

asynchronous, text-based computer conferencing. Journal of Distance Education, 14(2), 51–70.
Sager, N. (1970). The sublanguage method in string grammars. In R. W. Ewton & J. Ornstein (Eds.),

Studies in Language and Linguistics. El Paso, TX: University of Texas at El Paso.
Sager, N., Friedman, C., & Lyman, M. S. (1987). Medical language processing: Computer management of

narrative data. Reading, Mass: Addison-Wesley.
Snyder, J., D’Eredita, M. A., Yilmazel, O., & Liddy, E. D. (2009). Towards a cognitive approach for the

automated detection of connotative meaning. Paper presented at the International Conference on
Computational Semantics.

Wayner, P. (2000). Free For All. New York: HarperCollins.

30

