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Using natural language processing technology  
for qualitative data analysis 

Introduction 

Social researchers often employ qualitative methods to understand the work practices of 

groups. For example, researchers might examine transcripts of a group’s discussions to 

understand how it solved some task and the impact of different approaches (e.g., 

Benbunan-Fich, Hiltz, & Turoff, 2003). Because such data are textual, they require 

considerable manual effort to analyze. To support such analyses, researchers often use 

Computer-Assisted Qualitative Data Analysis Software (CAQDAS) tools (e.g., Atlas.ti, 

Hyper-research or Nudist, Barry, 1998; Lee & Esterhuizen, 2000). The most advanced 

offer capabilities for automatically coding text, but most current CAQDAS tools simply 

manage the traditional processes of coding and retrieving coded segments (Richards, 

2002). While computer support does provide considerable benefits, analyzing significant 

volumes of text still requires considerable effort from researchers, who must read and 

reread to make sense of the text and to locate evidence to support or refute their theories. 

As a result, qualitative research addressing important questions in social research often 

relies on small sample sizes because of the analysis effort required. 

Fortunately, recent years have seen a great growth in the capability of computer 

systems to process text in human languages, paralleling the growth in the volume of 

computer-readable text. There is a wide diversity of techniques and approaches, but we 

refer to these technologies collectively as Natural Language Processing (NLP). In this 

methodological paper, we introduce methodological techniques from the discipline of 

NLP to social researchers to show how NLP might be applied to provide advanced 

analytic capabilities to support analysis of textual data such as communication artefacts. 
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If successful, NLP tools could advance the work of social researchers by extending the 

capabilities of current tools and enabling researchers to explore massive data sets in 

greater depth. The contribution of this paper is to introduce the NLP methodology to 

social researchers and to demonstrate the potential and limitations of NLP tools for 

supporting social research.  

Before discussing NLP technology and its possible application to qualitative data 

analysis, we need to clarify the focus of our work. There is a widespread assumption that 

qualitative work is always interpretivist (i.e., focused on understanding individuals’ 

concepts of their social worlds) but qualitative research can, in fact, adopt any 

perspective: positivist, interpretivist or critical (Myers, 1997). In our studies, we are 

interested in the behaviour of the groups studied and assume that their work and social 

processes are accurately reflected by the texts that they produce. Rather than seeking to 

uncover latent or hidden meanings in the text, we look for evidence of particular 

behavioural patterns of the participants. These features make our approach essentially 

positivist, despite its reliance on qualitative data.  

In this paper, we explore how NLP techniques can be applied to support a 

particular task in positivist qualitative research, namely coding for content analysis. We 

focus in this paper specifically on coding and do not address the use of the coded data, as 

critical as that is to research overall (Richards, 2002). Content analysis is a qualitative 

research technique for finding evidence of concepts of interest using text as raw data 

(Myers, 1997). The result of the coding process is a text annotated with codes for the 

concepts exhibited (Miles & Huberman, 1994). In the approach we describe, codes are 

applied based on the features of specific segments of text, rather than with the goal of 
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understanding and interpreting the entire text as a whole. For example, if the focus of a 

study is group decision making, then transcripts of interactions are coded for evidence of 

theoretical constructs of interest, such as problem identification or introduction of an 

alternative. The goal of coding texts is to be able to study the relationship between 

concepts as expressed in the text (either inductively or deductively). For example, the 

coded text could be used to examine hypotheses such as the relationship between 

participation in decision-making and the overall effectiveness of a team.  

A key concern in coding is reliability, as measured by the degree of inter-rater 

agreement, that is, whether different coders working on the same text identify the same 

set of codes. If coders do not agree, then they discuss the coding until they reach a better 

level of shared understanding of the code. Codes and coding decisions are documented in 

a codebook. However, it must be admitted that a great deal of tacit knowledge is used in 

coding, meaning that coders need to be trained to code reliably. Once the coders are 

coding reliably, they must read the texts to code them for the concepts of interest, which 

can be quite labour intensive for a large corpus. For example, to study decision making in 

an online group would require reading all (or a large number) of the emails exchanged 

among members looking for evidence of constructs related to decision making. As a 

result, research teams often face limitations in the scope of analysis feasible based on the 

available work force. It is this problem of scale that we seek to address by using NLP 

technology.  

In the following sections, we first introduce NLP and discuss its capabilities and 

the underlying theoretical foundations of its use. We then present a short case study of its 

application to coding qualitative data to answer a social research question, namely an 
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examination of the role of group maintenance behaviours in online groups. We discuss 

limitations of our approach and present a cost-benefit analysis of the use of this novel 

approach to data analysis before concluding with a discussion of future work.  

Natural language processing 

Natural Language Processing is a computational approach to text analysis. It “is a 

theoretically motivated range of computational techniques for analyzing and representing 

naturally occurring texts at one or more levels of linguistic analysis for the purpose of 

achieving human-like language processing for a range of tasks or applications” (Liddy, 

2003). In the current paper, we discuss how NLP can be used to automate (fully or 

partially) the process of qualitative data analysis by identifying segments of text that 

provide evidence for concepts of theoretical interest (i.e., coding).  

NLP tools and approaches can be applied at different levels of analysis. The levels 

of linguistic analysis range from the lowest, Phonological, to the highest, Pragmatic, as 

shown in Table 1. Successively higher levels of linguistic processing reflect larger units 

of analysis, as well as increasing linguistic complexity and difficulty in processing. The 

larger the unit of analysis becomes (i.e., from morpheme to word to sentence to 

paragraph to full document), the greater the lexical variety, sentence structure and 

potential subtlety in meaning. Discerning meaningful regularities on which to build rules 

for processing text becomes a more difficult and elusive process as one moves from the 

lowest to the highest levels. Additionally, higher levels presume reliance on the lower 

levels of language understanding, and the theories used to explain the data move more 

into the areas of cognitive psychology and artificial intelligence.  

[Insert Table 1 about here] 
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Because of these differences, lower levels of language processing have been more 

thoroughly investigated and incorporated into systems, as they are easier to encode with 

more reliable results. For example, it is common for CAQDAS tools to support various 

kinds of automated searches for keywords (lexical level), but support at semantic or 

higher levels is less common. Language processing for content analysis similarly depends 

on an understanding of the lower levels of language, but its promise is situated in the 

higher levels of semantic, discourse and pragmatic levels of understanding.  

To analyze language at the higher levels of linguistic analysis, we draw on 

sublanguage theory. The early research in Sublanguage Theory (Liddy, Jorgensen, Sibert, 

& Yu, 1991; Liddy, Jorgensen, Sibert, & Yu, 1993; Liddy, McVearry, Paik, Yu, & 

McKenna, 1993; Sager, 1970; Sager, Friedman, & Lyman, 1987) has shown that there are 

differences in the linguistic phenomena amongst various genres (e.g., news reports, 

manuals, interviews, email). These genres exhibit characteristic lexical, syntactic, 

semantic, discourse and pragmatic features used by generators of these genres. Formally, 

a sublanguage is defined as the particular language usage patterns, which develop within 

the written or spoken communications of a language community that uses this 

sublanguage to accomplish some common goal or to convey and discuss activities and 

events of common interest.  

Once developed for a genre, a sublanguage grammar (at the syntax level) reflects 

the information structure of communication or texts in the domain, while the semantic 

classes of words used and the relationships between classes reflect the domain’s 

knowledge structure. The result of this type of theory-driven and data-focused approach 

is a domain model that provides guidance for learning the particularized linguistic 
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constructs to understand the meaning of texts expressed in the sublanguage. Technology 

can then be developed to simulate this understanding (Liddy, Jorgensen, et al., 1993) and 

instantiated within a system to extract meaning at multiple levels of understanding. 

Natural Language Processing uses a variety of techniques to extract meaning from 

context based on features of language use. Two general approaches are in use: statistical 

and symbolic approaches. The symbolic approach is knowledge-based, analyzing 

linguistic phenomena that occur within texts and reflecting syntactic, semantic and 

discourse information in human-developed rules and lexicons to extract meaning from 

text. On the other hand, corpus-based statistical methods apply mathematical techniques 

to develop approximate generalized models of linguistic phenomena based on actual 

examples, usually treating documents as independent “bags of words”. We will present 

our experiences applying the symbolic approach. Compared to statistical techniques, 

symbolic approaches have an advantage of not requiring large data sets for training, 

which fit our situation. On the other hand, symbolic methods require considerable effort 

to develop rules and the rules often are not easily transportable to other domains, thus 

limiting applicability to specific domains (Liddy, 2003), limitations that we will return to 

in the discussion.  

Example study 

In this section, we present a case study of NLP for qualitative data analysis. The authors 

are collaborating on a study of the work practices of teams of free/libre open source 

software (FLOSS) developers. These teams are geographically and temporally 

distributed, rarely interact on a face-to-face basis, and coordinate their activities primarily 

through electronic channels (Raymond, 1998; Wayner, 2000). Large archives of these 
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interactions are available for analysis. In the following sections, we describe the stages of 

the study, starting with conceptual development and coding system development through 

manual coding before discussing the use of NLP for this coding task. In keeping with our 

focus on research methods, here we present only enough detail about the study for a 

reader to understand the method applied and the role of NLP, omitting specific discussion 

of the study results. 

Conceptual development 

In this study, we examined the role of Group Maintenance behaviours in the effectiveness 

of FLOSS teams. Group maintenance behaviour refers to the discretionary relationship-

building behaviour among members that binds the group, maintains trust and promotes 

cooperation (Ridley, 1996). To understand and codify these behaviours, we drew on two 

theories describing pro-social, organizational behaviours: social presence (Garrison, 

Anderson, & Archer, 2000; Rourke, Anderson, Garrison, & Archer, 1999) and face work 

in computer-mediated communications (CMC) (Morand & Ocker, 2003). We discuss 

each in turn.  

Social presence. Garrison, Anderson & Archer (2000) defined social presence to 

be “the ability of participants… to project their personal characteristics into the 

community, thereby presenting themselves to the other participants as ‘real people’” (p. 

89). Strategies that people in CMC use to increase the degree of their social presence 

include the use of emoticons, humour, vocatives (a direct reference to another person), 

phatics (speech used to share feelings rather than information), inclusive pronouns, 

complimenting, expressions of appreciation and agreement, and non-standard or 
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expressive punctuation and conspicuous capitalization as means to express emotion 

(Rourke, et al., 1999). 

Face work. Referring to Goffman (1959), Morand (1996) explains that face is 

“the positive value individuals claim for the public self they present” (p. 545). Face is the 

result of two desires: independence of action (also known as negative face) and the need 

for approval and regard (also known as positive face) (Duthler, 2006; Meier, 1995). 

Negative face is exemplified by distancing behaviours to preserve self direction, freedom 

from imposed restrictions and a desire to be left alone, while positive face is exemplified 

by connectionist behaviours that seek respect, approval and a sense of belonging to the 

community (Duthler, 2006). However, whatever the public image one claims, face can be 

easily threatened or lost during interactions through face-threatening acts (FTAs). Thus, 

maintaining one’s own face, as well as that of others, permeates social interaction 

(Holtgraves, 2005; Morand, 1996).  

Politeness is a mitigation strategy that individuals use to moderate face threats in 

communicating with others (Morand, 1996). Politeness in CMC takes the form of 

linguistic acts that can be either positive tactics to invoke positive face or negative tactics 

to invoke negative face (Morand & Ocker, 2003). Examples of positive politeness tactics 

include use of colloquialisms or slang, inclusive pronouns, vocatives, agreement and 

sympathy. Examples of negative politeness include use of apologies, formal verbiage, 

hedges, indirect inquiries, subjunctives, honorifics, passive voice and rationales for FTAs 

(Morand, 1996; Morand & Ocker, 2003).  

Based on these theories and their discussion in the literature, an initial coding 

scheme was created deductively to investigate Group Maintenance behaviours in the 
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FLOSS data. This coding scheme described the Group Maintenance indicators of interest, 

described their characteristics and included definitions and examples to guide coders.  

Manual data analysis 

For the study, two FLOSS projects were selected, both of which had a goal of developing 

an Instant Messaging (IM) client: Gaim and Fire. The two projects were selected to be 

similar in terms of their project goals, nature of tasks, and potential users, as to allow for 

comparison of project effectiveness. Overall, Gaim emerged as a more effective project, 

according to Crowston et al.’s multivariate measures (Crowston, Howison, & Annabi, 

2006). Evidence of Gaim’s success can also be seen in that the project is still active (now 

known as Pidgin), while Fire ceased active development in early 2007. 

The data for the analysis was a sample of 1469 messages, a subset chosen 

randomly from the available data from the two developer discussion lists. These lists 

were chosen because they are the primary channel through which developers interact and 

as such are the main venue for group maintenance. A random sample was selected 

because the available coder time was not sufficient to code the entire archive, an example 

of the problem we seek to address with NLP.  

Two PhD students using the Atlas.ti software package trained to code according 

to the initial codebook. An iterative process of coding, inspection, discussion and revision 

was carried out to inductively learn how the indicators evidenced themselves in the data. 

Training continued until the coders reached an inter-rater reliability over 0.80, a typical 

level of agreement expected for qualitative data analysis. However, several indicators, 

such as humour, were dropped from analysis, as they proved to be too difficult for the 

coders to reach consensus through subjective judgments. Table 2 outlines the final coding 
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scheme used to manually code the selected messages. After the coders achieved 

reliability, they independently coded the remaining messages. 

[Insert Table 2 about here] 

Automated group maintenance coding 

In this section, we discuss how NLP was applied to perform the qualitative data analysis 

described in the previous sections. The automated content analysis coding was 

approached as an Information Extraction (IE) task, meaning that text showing evidence 

of group maintenance behaviour was to be identified and extracted from the text for 

further analysis, using symbolic rules developed by an analyst. However, in applying 

NLP, our goal was to develop a system that could support, rather than replace, a human 

coder. Therefore, we assumed that the output of the system would be reviewed and 

corrected by a human coder, rather than being used as is.  

For this project, we used a text-processing engine developed at our University 

(anonymized for review). The system processes the input text through a series of stages, 

beginning with preprocessing, which takes the raw text and stores it in a uniform format 

for processing. We converted the raw messages to a format that would preserve the 

metadata elements, identify significant features of the data, such as signature lines or 

quoted messages and prepare the data for processing with our text processing engine, thus 

encoding the discourse structure for further use. We also extracted structured 

information, such as date, sender and subject.  

The second stage is tokenization, which identifies the smallest complete units 

within a text, usually words, as well as sentence detection. Then each token is tagged 
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with a part of speech (morphological and lexical understanding). For example, for the 

sentence, 

Alan Helfer mentioned these security updates back 
in July 

applying tokenization and part-of-speech tagging would result in the following string:  

<sentence> Alan|NP Helfer|NP mention|VBD these|DT 
security|NN update|NNS back|RB in|IN July|NP .|. 
</sentence> 

Note that the tense of ‘mentioned’ and the plurality of ‘updates’ is embedded in the part-

of-speech tag (VBD-past tense verb; NNS-plural noun) and the word itself is converted to 

its lemmatized form. This string is next fed into bracketing stages, which identify 

numeric and temporal phrases, common noun phrases and proper noun phrases, reflecting 

lexical, syntactic, semantic and pragmatic understanding of the sentence, as in the 

following example: 

<sentence> <proper noun> Alan|NP Helfer|NP 
</proper noun> mention|VBD these|DT <noun phrase> 
security|NN update|NNS </noun phrase> back|RB 
in|IN <temporal> July|NP </temporal> .|. 
</sentence> 

The next stage of automatic processing interprets the phrases and assigns each a category 

(person, organization, date, etc.), resulting in a sentence marked up as follows:  

<sentence> <proper noun, "person"> Alan|NP 
Helfer|NP </proper noun> mention|VBD these|DT 
<noun phrase, “unknown”> security|NN update|NNS 
</noun phrase> back|RB in|IN <temporal, “month"> 
July|NP </temporal> .|. </sentence> 

After the text has been marked up for these entities, in the final stage of analysis, hand-

written information extraction rules are applied to extract a variety of kinds of 

information embedded in the text, such as metadata elements, relationships among 

entities, descriptors, or, in our application, evidence of a theoretical construct of interest.  
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Rule-writing effort 

An NLP analyst developed information extraction rules for the group maintenance codes 

in Table 1. Because of time limitations, we developed NLP rules for only twelve of the 

fifteen manual codes: all except Vocatives, Disclaimers/Self-depreciation and Stating 

Rationale for FTA. (Preliminary work for these three codes suggests that the issues 

surrounding the automation of the coding would be similar to the issues for the other 

twelve.) The rule-writing process was iterative: rules were written to code the most 

abundant and obvious examples of the coded text and then progressively refined for 

coverage and accuracy.  

Some rules, as for Capitalization, were primarily based on regular expressions to 

detect upper case. Other rules, as for Apology, focused on specific lexical items—‘sorry’, 

‘apologies’—or a lexicon of lexical items. But others required the use of the full range of 

NLP features such as part of speech, actual word, semantic class and syntax, as seen in 

the example rule in Figure 1, a rule for finding Agreement.  

[Insert Figure 1 about here] 

As shown in Figure 1, the rules used for this project have a two-part structure: a 

premise and an action. The premise defines the matching criteria for the rule. The action 

defines the resulting output when a text string matches the premise of the rule. In the 

example rule, the <S> in the premise indicates that the matching text must be situated at 

the beginning of a sentence. The elements seem, more, and either than or then are 

specific lexical items (words) that must appear in the sentence. The element do|VBZ 

combines a lemmatized lexical item, do, with tense information from the part of speech 

VBZ (present tense). In combination with the semantic class represented by $it, which 
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can be the word ‘it’, ‘this’, ‘that’, or ‘these’, the verb which actually is represented by 

do|VBZ can be ‘do’ (“these do”), or ‘does’ (“it does”), an example of the use of syntax. 

The element $anywd|$anypos represents any token in a candidate text string (any 

word tagged with any part of speech). When a candidate text string matches this rule, the 

resulting action tags the text with the code agreement. For example, the rule would 

match and code as Agreement the sentence:  

It does seem to be more trouble then i thout at 
first.  

The ruleset included both positive rules, to code sections of text, and negative 

rules, to cancel out the coding of text. For example, if a rule finds “Sorry that I caused a 

problem here,“ it would be coded as Apology. However the presence of “not” in “I’m not 

sorry that I caused a problem here,” indicates quite the opposite, and thus another rule is 

added that is intended to rectify the coding when “not” appears. 

Rule writing was interspersed with testing to assess performance on the training 

data during the development process. The results of the manual coding of the 1469 

messages from Fire and Gaim were used for this effort as the so-called “Gold Standard” 

data (GS), meaning that these data are assumed to be correct and so can be used to check 

the performance of the NLP system. A portion of the coded data (155 messages, or about 

10%) was set aside for final testing of the completed ruleset. The remainder was used to 

assess the performance of the ruleset as it was being built.  

Results 

To test the performance of the automated process, the developed ruleset was run on the 

10% of the GS data reserved for testing. Each message in the test set was inspected to see 
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which instances of Group Maintenance were correctly coded, which were missed, how 

many additional instances were erroneously coded by the automated process and to 

understand the nature of the errors.  

Two standard information extraction metrics were used to evaluate the automated 

system, Recall and Precision. Recall measures the proportion of the codes in the GS data 

that was identified and extracted by the system (i.e., coverage). Precision measures the 

proportion of the automatically extracted data that was coded correctly, as compared to 

the GS data (i.e., accuracy). It is usually difficult to have high performance on both 

measures: in general, the more accurate the results, the smaller the coverage of the target 

data, and vice versa. To completely automate coding, it would be necessary to achieve 

good performance on both measures. However, given our goal of developing a support 

system, in building the rules, we optimized the automated system for Recall, with a goal 

of 80%. We took this approach because we felt that it would be easier for someone 

reviewing the system output to remove incorrectly coded data (included due to low 

Precision) than to search the message logs to find evidence that had not been coded at all 

(the result of low Recall).  

Table 3 shows the system performance for the 12 Group Maintenance codes. The 

training and testing columns compare the performance of the system on the training and 

testing data. The training performance is generally higher because the rules were 

developed in reference to these data. Examining the codes in more detail, we see that 

Recall is highest for Emoticon, Inclusive Pronouns, and Formality, reflecting the 

regularity of the realization of these constructs in the text. It is lower for codes such as 

Slang or Appreciation that show higher variability. The Precision of the results is lower, 
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reflecting our deliberate decision to favour Recall over Precision. Nevertheless, Precision 

is quite good for a number of codes, such as Emoticon or Salutations, and with the 

exception of Capitalization and Punctuation, all are at usable levels. We discuss below 

the problems that lead to the unexpectedly low level of Precision for these codes.  

[Insert Table 3 & 4 about here] 

Another way to show the performance of the system is with a table comparing the 

GS and system decisions, as shown in Table 4 for the test data for one construct, Hedges. 

The first row of the table shows that the GS test data (the reserved 10% of messages) 

included 244 instances of Hedges, of which the system correctly coded 181 and missed 

63, giving a Recall of 74%. The first column of the table shows that the system coded a 

total of 262 segments of text as being Hedges, of which 181 matched the GS and 81 did 

not, giving a Precision of 69%.  

Not shown is the final cell, i.e., the number of segments of text in the corpus that 

neither the human coders nor the system coded as being a hedge. Because of the use of 

thematic units as the unit of coding (a limitation discussed below), it is not possible to 

give a precise figure for this cell. However, the test data included 155 messages, 

suggesting the number of units was in the thousands. As a result, even with the current 

level of performance, the system could reduce the amount of text to be examined by a 

human coder by an order of magnitude or more (in this case, from thousands of units to 

262), potentially increasing the speed of coding by a comparable amount. The 

performance impact would be greater for codes occurring less frequently (for which the 

narrowing would be greater), but lower for codes for which the system exhibits lower 

Precision.  
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Discussion and limitations 

Overall, the use of NLP to code qualitative data seemed quite promising, as the rules that 

were developed showed good performance on a number of codes. In analyzing the results 

of our work, we identified several issues that impacted performance. In this section we 

discuss these issues, before concluding with a discussion of the cost and benefits of this 

approach.  

Insufficient preprocessing. Preparing the data for processing is an important and 

often time-consuming part of NLP. For this effort, messages were preprocessed in 

various ways, e.g., to section off headers, forwarded messages and signature blocks, 

because human analysts generally excluded these sections from manual coding. However, 

messages also include lines of programming language, error logs, source file comparisons 

(diffs) and messages copied in from other sources that are difficult to reliably identify and 

exclude from processing. Unfortunately, including this content particularly affected 

Precision for Punctuation, Capitalization and Emoticon, as it frequently included strings 

of punctuation, capitalized words or characters that resemble emoticons.  

Unit of coding. In manually coding the data, the researchers chose the thematic 

unit as the unit of coding, a common choice in qualitative data analysis. A word, a phrase, 

a sentence or an entire paragraph might be marked as capturing the group maintenance 

evidence. Unfortunately, with this variability in scope it is difficult to exactly match the 

boundaries of text to be captured using NLP rules. For the results reported above, any 

overlap between the text coded manually and that coded automatically was considered to 

be a match, as is often done when comparing human coders. To facilitate future 
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comparisons of human and automatic coding though it would be better to pick a more 

easily defined unit of coding, such as the sentence or even an entire message.  

Adequate training examples. Some codes were so sparse in the data as to provide 

unreliable training data. In general, to apply NLP requires hundreds of examples of 

correctly coded text or even more to apply statistical techniques. This shortcoming in our 

data is evident in performance differences; in general, the difference between training and 

testing is greater for the codes that had fewer than 100 training examples, with the 

exception of Formal Verbiage, which performed surprisingly well.  

Manual coding error. In order to assess the benefit of automatic coding, 

performance is compared against the human results. However, any errors in manual 

coding are propagated in the automatic processing, as rules are built based on possibly 

erroneous data. We focused on gaining complete agreement between human coders, but 

on further review found that the GS data they created still contained coding errors, for 

several reasons. First, it took some time for inter-coder reliability to stabilize. The GS 

data used in our evaluation represents coding prior to and including the stabilization 

period, meaning that not all of the coding is of the same quality. Second, coding is a 

tedious, fatiguing process, so errors both of commission and omission are likely to occur 

in coding – perfect reliability is simply not achievable with human coders in reasonable 

time. As well, the human coders were somewhat disadvantaged in their assessment of 

some codes, for example Slang, because they were not from the community of 

developers, and therefore not adequately familiar with some of the terms or community-

specific meanings.  
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We attempted to quantify the effect of manual coding error on our results by re-

judging NLP false hits for correctness according to the codebook (vs. against the GS 

data). Our expert NLP analyst judged that with this correction, Precision for all codes 

would have risen. The most dramatic increases would be seen for codes that have the 

fewest examples in the GS data, for which a few errors makes a noticeable difference in 

the result. However, for Inclusive Pronouns, there was a difference of 31% between the 

achieved Precision and the analyst’s estimate correcting for manual coding errors, 

reflecting the ease with which automated techniques can find such regular forms and the 

difficulties human coders have. This result shows that the automatic process may in some 

case be even more reliable for finding instances than human coders. 

Language and Meaning. The thorniest problems for automation of content 

analysis deal with the incredible richness of language. This richness varies by code of 

interest. For example, very few rules were needed for good performance for the codes 

Formal Verbiage, Apology and Agreement, which exhibit regularities in their expression. 

On the other hand, Hedges and Vocatives (which was explored but not formally 

evaluated) proved more difficult for a variety of syntactic and semantic reasons:  

• Context. Content analysis can be highly dependent upon context. Unfortunately, the 

processing engine we used currently does not have a way to consider text outside of a 

sentence boundary, except for co-reference purposes. Thus, context outside of a single 

sentence is not available for consideration. This limitation prevents full exploitation of 

discourse structure and context of an entire message.  

• Syntactic variety and synonymy. Language holds an infinite variety of ways to 

structure and convey meaning using differing syntactic structures, synonymous terms, 
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and embellishments (adverbial and adjectival clauses). While the sublanguage of 

software engineering does not reflect the full variety of language, good automation can 

require much more training data than was available to capture this richness. 

• Multiple aspects of meaning. Various clue words were helpful in identifying Hedges, 

for example, ‘probably’. Others, such as ‘seem’, ‘would’, ‘of course’, were more 

problematic, as sometimes they were indicators and at other times, not. Context, both 

within the sentence and beyond the sentence, can subtly affect meaning, which under 

many circumstances can be difficult for an automated system to capture. A solution 

for a particularly difficult problem in correctly identifying Vocatives has not yet been 

explored, that is, identifying the differentiating features that indicate when ‘you’ refers 

to a specific individual and when ‘you’ refers to ‘a person’, as in the sentence, “When 

you open up the file, you will see two items”. Without the ability to interpret context 

surrounding this sentence, or an associated response to the message, it is difficult to 

code Vocatives with high recall and reasonable precision. 

• Implicit meaning. NLP systems are only now just beginning to explore the extraction 

of meaning that is implicit in text (Snyder, D’Eredita, Yilmazel, & Liddy, 2009). This 

is a very challenging area of research, since even humans have difficulty in this space, 

as evident in the difficulty our analysts encountered with the Humour code. 

Cost/benefit 

Finally, an important component to consider in the evaluation of NLP-enabled content 

analysis is the potential cost-benefit to a research project. While NLP can potentially 

automate parts of the coding process, additional effort is required to develop and validate 

a ruleset. In the approach we took, NLP coding was built upon a manually crafted 
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codebook (as is required for any such qualitative study). However, the NLP ruleset 

required additional development for the rules and testing time to determine performance, 

both requiring the time of a trained NLP analyst. For a large-scale analysis system 

handling very large volumes of textual data, particularly discourses spanning long 

periods, some development time might also be needed to adjust for changes in data 

format, new discoveries and evolution in both the data content and the analytic thinking.  

For the case reported here, a software engineer and a linguistic analyst each 

committed approximately 5 weeks of effort (FTE) over the course of a year for data 

preprocessing, rule-writing, development and testing. In comparison, two human coders 

worked half time on the project for the same period and were able to code only two 

projects, though some of this effort went to refining the codebook that was used as a basis 

for both the manual and NLP coding. Once the coders were trained and codebook 

stabilized, manually coding 700 messages on all 15 codes took approximately 100 hours 

of effort for one coder.  

In light of the additional work needed, an NLP-supported approach would not 

make sense for small (e.g., a thousand or so messages) unique data sets that can be 

handled by training content coders within a relatively short time span. Furthermore, we 

note that the NLP approach is only appropriate for theoretical concepts that find a regular 

expression in text. NLP would be unlikely to work for coding that draws heavily on 

subjective interpretation and context. However, for suitable codes, and after development 

resources have been invested, benefits can be realized for large-scale studies by 

processing and analyzing large volumes of data with reduced human coder effort. 

Specifically, the investment of time in writing rules should enable order of magnitude 
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reductions in the effort needed to code additional text, potentially allowing the analysis of 

hundreds of groups with hundreds of thousands of messages. Indeed, such automation is 

arguably the only way to reliably handle such large amount of text that would otherwise 

require hundreds of person-years of coder effort.  

Conclusions  

In this paper, we explored the possibilities and limitations of applying NLP techniques to 

the task of qualitative data analysis, specifically content analysis of communication 

artefacts from online groups. Our future work for this project has three aspects.  

First, we are building a system around the NLP text processor that will allow a 

user to quickly check the system-applied codes. Second, we will use the system to 

support our study of Group Maintenance behaviour in FLOSS teams. We have developed 

some initial hypotheses based on patterns we saw in the human coding, but the current 

volume of manually coded data allows for only a comparative case study of the two 

teams. By applying NLP, we hope to be able to analyze hundreds of teams, thus 

providing an evidentiary basis for stronger findings.  

Finally, a key bottleneck in the current study is the reliance on a trained NLP 

analyst to develop and tune the rulesets. To avoid this bottleneck, we plan to explore the 

use of machine learning (ML) techniques to build rules. The most significant limitation of 

an ML approach though is that it requires even more GS data as input: a rule of thumb is 

500 examples of each code, which we have for only two of the codes in our example 

case.  

In summary, our small case study demonstrates the promise of NLP support for 

this particular style of qualitative data analysis. The performance of the rulesets we 
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developed suggests that this approach has considerable promise for coding at least some 

kinds of concepts. This approach seems most promising for projects with content analysis 

codes that are readily evident in large data sets, projects that analyze multiple data sets 

over time and projects where manual coding is simply not feasible due to the volume of 

the data, an increasingly common challenge as social researchers study online groups.  
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Tables and Figures 

Table 1. Levels of linguistic analysis.  

Level Definition and examples 
Phonological Phonological analysis pertains to the auditory features of language: 

sound, pitch, and inflection. 
Morphological Morphological analysis occurs at the smallest level of linguistic 

meaning, the morpheme.  For example, ‘-ed’ added to the end of a 
word can signify an action that occurred in the past, and ‘un-‘ added 
before a word, such as ‘tested’, radically alters a word’s meaning.  
Prefixes and suffixes are the most familiar morphemes. 

Lexical Lexical analysis occurs at the word level.  Part of speech is a feature of 
lexical analysis affecting meaning. Consider, for example, the 
difference in meaning between ‘book’ as a noun (read a book), and 
‘book’ as a verb (to book a flight). 

Syntactic Syntactic analysis pertains to the meaning that derives from the 
sequence of words in a phrase or sentence.  For example, consider the 
different meanings of ‘the man hit the ball’ and ‘the ball hit the man’. 

Semantic Semantic analysis deals with the definitional meanings of words within 
context, whether ‘bank’, for example, refers to a river bank, or to a 
financial institution.  Semantic analysis can deal with fine gradations of 
meaning depending on context. 

Discourse Discourse analysis reveals meaning based on a larger unit than a 
sentence, where the meaning of a particular sentence is affected by the 
text that precedes it, or its placement within a document. Discourse 
analysis has led to the identification of genres of documents, where 
information can be predictably found through document structure 
(introduction, byline, research findings, etc.).  

Pragmatic Pragmatic analysis involves the incorporation of world knowledge to 
determine meaning, that is, connotations based on experience, and 
shared understandings.  For example, we understand much more about 
“Third World Countries” than the component words can tell us. 
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Table 2. Group maintenance coding scheme showing conceptual categories, indicators 
and definitions.  

Category  Indicator  Definition  
Emoticons  Emphasis using emoticons 
Capitalization  Emphasis using capitalization 

Emotional 
Expressions  

Punctuation  Emphasis using punctuation  

Colloquialisms/Slang  Use of colloquialisms or slang beyond group-
specific jargon 

Vocatives  Referring to or addressing a specific participant  
Inclusive pronouns  Incorporating writer and recipient(s) 
Salutations/Closings  Personal greetings and closures  
Complimenting  Complimenting others or message content  
Expressing agreement  Showing agreement  
Apologies  Apologizing for one’s mistakes  
Encouraging 
participation  Encouraging members of the group to participate 

Positive 
Politeness  

Expressing appreciation  Showing appreciation for another person’s 
actions  

Disclaimers/Self-
depreciation  

Disclaiming prior to a face-threatening act 
(FTA); self-depreciation to distance  

Rational for FTA  Stating an FTA as a general rule to minimize 
impact  

Hedges/Hesitation  Tactics to diminish force of act; hesitation in 
disagreement  

Negative 
Politeness  

Formal verbiage  Using formal wording choices 
 
 

Figure 1. Example NLP rule showing premise and action.  

Premise 
<S> ($it|$anypos) (do|VBZ) (seem|$anypos) 
($anywd|$anypos)* (more|$anypos) (th[ae]n|$anypos) 
($i|$anypos) ($anywd|$anypos)* </S> 

Action ==> generic ($&, 'entity', 'gm', 'agreement', 
sf($1,$2,$3,$4,$5,$6,$7,$8)); 
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Table 3. System performance. 

CODE RECALL  PRECISION  GS 
# of INSTANCES 

 Training Testing  Training Testing  Training Testing 
Apologies 89% 67%  81% 67%  19 3 
Formality 90% 89%  55% 53%  29 9 

Complimenting 88% 67%  70% 40%  40 6 
Agreement 87% 80%  61% 60%  71 15 

Capitalization 96% 60%  27% 19%  73 10 
Appreciation 90% 64%  91% 45%  90 14 

Emoticon 91% 91%  30% 81%  122 32 
Salutations 77% 86%  79% 86%  159 28 
Punctuation 79% 71%  16% 22%  257 34 

Slang 89% 67%  71% 69%  274 81 
Inclusive 
Pronouns 

98% 98%  90% 58%  478 55 

Hedges 80% 74%  63% 69%  1136 244 
Note: Recall is the percentage of human applied codes found the system; precision is the 
percentage of codes found by the system that match the human codes. Testing results are 
on the 10% of data held back for final testing.  
 

Table 4. System decisions compared to Gold Standard decisions for test data for Hedges. 

  System 
  Coded Not coded Total 

Coded 181 63 244 
Gold standard 

Not coded 81   
 Total 262   
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